2 resultados para Stereospecificity and lack thereof

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) have been studied as a prominent class of high performance electronic materials for next generation electronics. Their geometry dependent electronic structure, ballistic transport and low power dissipation due to quasi one dimensional transport, and their capability of carrying high current densities are some of the main reasons for the optimistic expectations on SWNTs. However, device applications of individual SWNTs have been hindered by uncontrolled variations in characteristics and lack of scalable methods to integrate SWNTs into electronic devices. One relatively new direction in SWNT electronics, which avoids these issues, is using arrays of SWNTs, where the ensemble average may provide uniformity from device to device, and this new breed of electronic material can be integrated into electronic devices in a scalable fashion. This dissertation describes (1) methods for characterization of SWNT arrays, (2) how the electrical transport in these two-dimensional arrays depend on length scales and spatial anisotropy, (3) the interaction of aligned SWNTs with the underlying substrate, and (4) methods for scalable integration of SWNT arrays into electronic devices. The electrical characterization of SWNT arrays have been realized by polymer electrolyte-gated SWNT thin film transistors (TFTs). Polymer electrolyte-gating addresses many technical difficulties inherent to electrical characterization by gating through oxide-dielectrics. Having shown polymer electrolyte-gating can be successfully applied on SWNT arrays, we have studied the length scaling dependence of electrical transport in SWNT arrays. Ultrathin films formed by sub-monolayer surface coverage of SWNT arrays are very interesting systems in terms of the physics of two-dimensional electronic transport. We have observed that they behave qualitatively different than the classical conducting films, which obey the Ohm’s law. The resistance of an ultrathin film of SWNT arrays is indeed non-linear with the length of the film, across which the transport occurs. More interestingly, a transition between conducting and insulating states is observed at a critical surface coverage, which is called percolation limit. The surface coverage of conducting SWNTs can be manipulated by turning on and off the semiconductors in the SWNT array, leading to the operation principle of SWNT TFTs. The percolation limit depends also on the length and the spatial orientation of SWNTs. We have also observed that the percolation limit increases abruptly for aligned arrays of SWNTs, which are grown on single crystal quartz substrates. In this dissertation, we also compare our experimental results with a two-dimensional stick network model, which gives a good qualitative picture of the electrical transport in SWNT arrays in terms of surface coverage, length scaling, and spatial orientation, and briefly discuss the validity of this model. However, the electronic properties of SWNT arrays are not only determined by geometrical arguments. The contact resistances at the nanotube-nanotube and nanotube-electrode (bulk metal) interfaces, and interactions with the local chemical groups and the underlying substrates are among other issues related to the electronic transport in SWNT arrays. Different aspects of these factors have been studied in detail by many groups. In fact, I have also included a brief discussion about electron injection onto semiconducting SWNTs by polymer dopants. On the other hand, we have compared the substrate-SWNT interactions for isotropic (in two dimensions) arrays of SWNTs grown on Si/SiO2 substrates and horizontally (on substrate) aligned arrays of SWNTs grown on single crystal quartz substrates. The anisotropic interactions associated with the quartz lattice between quartz and SWNTs that allow near perfect horizontal alignment on substrate along a particular crystallographic direction is examined by Raman spectroscopy, and shown to lead to uniaxial compressive strain in as-grown SWNTs on single crystal quartz. This is the first experimental demonstration of the hard-to-achieve uniaxial compression of SWNTs. Temperature dependence of Raman G-band spectra along the length of individual nanotubes reveals that the compressive strain is non-uniform and can be larger than 1% locally at room temperature. Effects of device fabrication steps on the non-uniform strain are also examined and implications on electrical performance are discussed. Based on our findings, there are discussions about device performances and designs included in this dissertation. The channel length dependences of device mobilities and on/off ratios are included for SWNT TFTs. Time response of polymer-electrolyte gated SWNT TFTs has been measured to be ~300 Hz, and a proof-of-concept logic inverter has been fabricated by using polymer electrolyte gated SWNT TFTs for macroelectronic applications. Finally, I dedicated a chapter on scalable device designs based on aligned arrays of SWNTs, including a design for SWNT memory devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study positioned the federal No Child Left Behind (NCLB) Act of 2002 as a reified colonizing entity, inscribing its hegemonic authority upon the professional identity and work of school principals within their school communities of practice. Pressure on educators and students intensifies each year as the benchmark for Adequate Yearly Progress under the NCLB policy is raised, resulting in standards-based reform, scripted curriculum and pedagogy, absence of elective subjects, and a general lack of autonomy critical to the work of teachers as they approach each unique class and student (Crocco & Costigan, 2007; Mabry & Margolis, 2006). Emphasis on high stakes standardized testing as the indicator for student achievement (Popham, 2005) affects educators’ professional identity through dramatic pedagological and structural changes in schools (Day, Flores, & Viana, 2007). These dramatic changes to the ways our nation conducts schooling must be understood and thought about critically from school leaders’ perspectives as their professional identity is influenced by large scale NCLB school reform. The author explored the impact No Child Left Behind reform had on the professional identity of fourteen, veteran Illinois principals leading in urban, small urban, suburban, and rural middle and elementary schools. Qualitative data were collected during semi-structured interviews and focus groups and analyzed using a dual theoretical framework of postcolonial and identity theories. Postcolonial theory provided a lens from which the author applied a metaphor of colonization to principals’ experiences as colonized-colonizers in a time of school reform. Principal interview data illustrated many examples of NCLB as a colonizing authority having a significant impact on the professional identity of school leaders. This framework was used to interpret data in a unique and alternative way and contributed to the need to better understand the ways school leaders respond to district-level, state-level, and national-level accountability policies (Sloan, 2000). Identity theory situated principals as professionals shaped by the communities of practice in which they lead. Principals’ professional identity has become more data-driven as a result of NCLB and their role as instructional leaders has intensified. The data showed that NCLB has changed the work and professional identity of principals in terms of use of data, classroom instruction, Response to Intervention, and staffing changes. Although NCLB defines success in terms of meeting or exceeding the benchmark for Adequate Yearly Progress, principals’ view AYP as only one measurement of their success. The need to meet the benchmark for AYP is a present reality that necessitates school-wide attention to reading and math achievement. At this time, principals leading in affluent, somewhat homogeneous schools typically experience less pressure and more power under NCLB and are more often labeled “successful” school communities. In contrast, principals leading in schools with more heterogeneity experience more pressure and lack of power under NCLB and are more often labeled “failing” school communities. Implications from this study for practitioners and policymakers include a need to reexamine the intents and outcomes of the policy for all school communities, especially in terms of power and voice. Recommendations for policy reform include moving to a growth model with multi-year assessments that make sense for individual students rather than one standardized test score as the measure for achievement. Overall, the study reveals enhancements and constraints NCLB policy has caused in a variety of school contexts, which have affected the professional identity of school leaders.